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Abstract—Most of program loops in micro-processors are 
implemented with conditional branches that are the origin of 
many micro-complexities like branch prediction.  Intrinsically, 
loops with constant iterations need not use conditional branches.  
The Enclosed Loop Micro-Sequencer (ELMS) supports the 
“FOR” loops with constant iterations at the machine code level, 
which provides programming convenience and avoids micro-
complexities from the beginning.  Another design goal of ELMS is 
to be compact so that it can be easily embedded into FPGA 
devices.  Low resource consumption is achieved by separating 
program flow control functions from the data processing 
functions (i.e., the arithmetic logic unit (ALU) in most micro-
processors).  The ELMS is able to run multi-layer nested-loop 
programs without help from external arithmetic/logic resources 
used for data processing.  Since the data processing resources are 
external and purely user defined, the ELMS is not a traditional 
micro-processor, which is why it is called a “micro-sequencer”.  
The ELMS is used in the digitizer FPGA for the Fermilab Beam 
Loss Monitor system with expected performances. 
 

Index Terms—Embedded System, Micro-processor, Micro-
sequencer, FPGA, IP core. 

I. INTRODUCTION 
PGA computing has been broadly used in high-
energy/nuclear physics experiments.  Inside an FPGA, data 

processing resources are flexibly defined by the users and 
usually are application specific.  The sequence control of the 
data processing resources is an important issue in FPGA 
design. 

Sequence control is normally implemented using either 
finite state machines (FSM) or embedded micro-processor 
cores.  When an input data item is to be fed through a fast and 
very simple process, typically using a few clock cycles, FSM is 
a suitable means of sequence control.  FSM also responds to 
external conditions promptly and accurately.  However, the 
sequence or program in the FSM is not easy to change and 
debug, especially when irregularities exist in the sequence.  
Also, the state machines occupy logic elements no matter how 
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rarely they are used.  So it is not economical to use FSM to 
implement the occasionally-used sequences such as 
initialization, communication channel establishment, etc. 

Embedded or external micro-processor is another option of 
sequence control.  Today’s main stream micro-processors are 
ALU (Arithmetic Logic Unit) oriented.  The ALU, being the 
center piece of the micro-processor, performs not only data 
processing, but also program control functions.  The ALU 
oriented architectures have two drawbacks in FPGA 
computation.  (1) When a micro-processor core is embedded 
in an FPGA, the ALU occupies large amount of silicon 
resources.  In instances where the application specific data 
processing is implemented in dedicated logic for the sake of 
speed, the ALU is barely utilized.  (2) The program loops are 
implemented using conditional branches, which are the 
primary source of the micro-complexity of pipeline bubble, 
branch penalty etc. that needs to be solved with further micro-
complexities such as branch prediction.  The micro-processor 
is a better choice only if a data item is to be processed with a 
very complicate program, typically using thousands of clock 
cycles. 

 
When a data item is to be processed with a medium length 

program, e.g., using a few hundreds clock cycles, the sequence 
control needed is not too much more than a PC+ROM 
structure (Fig. 1, left), which is the starting point of the 
Enclosed Loop Micro-Sequencer (ELMS) (Fig. 1, right).  The 
primary difference between the ELMS and regular micro-
processor is that in the ELMS there are no data processing 
resources like an ALU.  The control signals for external data 
processing resources turn on and off according to the sequence 
stored in the ROM as the program counter (PC) increases.  
Obviously, supporting logic must be added to control the PC.  
In addition to the conditional branch logic that also exists in 
micro-processors, loop and return logic with an internal stack 
are added in the ELMS, so that it supports “FOR” loops with 
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Fig. 1.  Micro-Sequencers:  When the program counter increases, the control 
signals changes states according to the sequence stored in the ROM.  Left: 
PC+ROM structure.  Right: the Enclosed Loop Micro-Sequencer (ELMS).
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constant iterations at the machine code level and is self-
sufficient to run multi-layer nested-loop programs. 

II. THE FERMILAB BEAM LOSS MONITOR SYSTEM 

A. Overview 
The new Fermilab Beam Loss Monitor (BLM) readout 

system is designed to perform several tasks: to provide a 
flexible and reliable abort system to protect Tevatron magnets; 
to provide loss monitor data during normal operations of the 
Tevatron, Main Injector and Booster; and to provide detailed 
diagnostic loss histories when an abort happens.  Beam losses 
are detected using ion chambers. 

The inputs from ion chambers are integrated for a short 
period of time, typically 21 µs, and digitized to 16 bits. The 
digital data are used to construct several sliding sums, which 
are a measure of the integrated loss over a variety of time 
scales up to 64k cycles.  The abort request signals for each 
channel are made in firmware by comparing these sums as well 
as immediate measurement with thresholds.  The system abort 
signal is made by checking number of channels and types of 
abort request signals. 

B. The Digitizer Card 
A Digitizer Card (DC) integrates, digitizes and processes 4 

channels of ion chamber inputs.  The block diagram for the 
FPGA calculating the sliding sums is shown in Fig. 2. 

 
A total of 16 sliding sums are to be kept in the FPGA.  If all 

sums were kept using accumulators, the FPGA would easily 
consume several thousand logic elements, out of 5980 logic 
elements in the Altera Cyclone EP1C6 device we use. 

On the other hand, during 21 µs period, there are more than 
1000 clock cycles at 50 MHz inside the FPGA.  Clearly it is 
more economical to calculate 16 sliding sums sequentially 
using one set of data processing resources.  The control signals 
shown in Fig. 2 are turned on and off to perform various 
functions by the “Seq128” block with an ELMS block inside. 

III. THE ENCLOSED LOOP MICRO-SEQUENCER 

A. Description: 
Detailed block diagram of the ELMS is shown in Fig 3.  

The program is stored in a 36-bit x 128-word ROM in our 
example. 

 
Both unconditional and conditional branches are supported 

as in regular micro-processors.  We have used a non-pipelined 
design in our example.  The Loop & Return Registers (LRR) 
along with a 128-word stack are the primary elements designed 
to support the constant iteration “FOR” loops. 

B. Program Control Instructions 
Some ELMS instructions are shown in Table I. 

 
The ELMS instructions are 36-bit words.  When any of the 

bits 32-35 is set, the word represents a program control 
instruction.  Especially, when bit 33 is set, the instruction starts 
a FOR loop in which the bit fields BckA, EndA and cnt are 
pushed into corresponding LRR/stack.  The PC is incremented 
until reaching EndA, and then it is set back to BckA.  This 
continues for (cnt+1) passes.  Then the stack is popped on the 
last pass of the loop. 

The CALL instruction is implemented as a combination of 
the FOR and JMP instructions with cnt automatically set =1.  
At the CALL instruction, the PC jumps to desA while BckA 
and EndA are pushed into the LRR/stack.  When PC reaches 
EndA or when a RTN instruction is seen, the PC jumps back to 
BckA and the stack is popped.  Note that in addition to a 
regular return instruction, the return point from the subroutine 
is also pre-defined to be EndA, which allows an alternative 
means of subroutine return that provides extra convenience.  

Multi-layer FOR or CALL loops can be nested.  When an 
inner layer starts, the parameters of the unfinished outer loop 
are pushed into the stack, which allows the outer loop to 
continue after the inner loop finishes.  Up to 128 layers of 
loops can be nested. 
 

TABLE I
PROGRAM CONTROL INSTRUCTIONS 

35 34 33 32 31:24 23:16 15:8 7:0 Notes 
JMP 1 0 0 0    desA Unconditional go to desA 
JMPIF 0 0 0 1 desA Conditional go to desA 
FOR 0 0 1 0  BckA EndA cnt Repeat cnt+1 times form BckA to EndA
CALL 1 0 1 0 BckA EndA desA Go to desA, upon PC=EndA, go BckA 
RTN 0 1 0 0     Return, pop stack 

0 0 0 0 X X X X User instructions 

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return 
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return 
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

 
Fig. 3.  Detailed block diagram of the Enclosed Loop Micro-Sequencer 
(ELMS):  The Loop & Return Registers + Stack block provides support of 
the “FOR” loop with constant iterations.  
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Fig. 2.  The partial block diagram of the SUM03 FPGA 


